STRUCTURE OF A SHOCK WAVE IN WHICH MULTIPLE
IONIZATION OF THE ATOMS IS TAKING PLACE
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Tonization relaxation in a shock wave of very large amplitude is considered, the atoms be-
hind the front of the shock wave being multiply ionized. In calculating the structure of the
shock wave and the kinetics of ionization, allowance is made for the electron component of
the thermal conductivity which plays an important role in this. A simplified method of cal-
culating the kinetics of multiple ionization is proposed, and an application of this method is
presented. The results of the structure calculation show that, as a result of heating by
thermal conduction, the gas is considerably ionized even in front of the jump in compression,
while the electron component of the thermal conductivity passes through a maximum.

Ionization relaxation behind the leading edge of a shock wave in a gas has been studied both theoret-
ically and experimentally; however, only relatively weak shock waves have been considered, the ionization
of the atoms in these being correspondingly weak.* One of the main points of interest is the mechanism of
primary ionization, involving the "seed” electrons from which the electron avalanche begins, subsequently
developing by way of the ionization of the atoms under the impact of the electrons. In the majority of pub~
lications, it has been considered that the primary electrons appear by virtue of atom-atom collisions, al-
though the possibility of initial ionization by virtue of light irradiation has also been considered, An im-
portant feature in the process of ionization relaxation is the temperature difference between the electrons
and the heavy particles (atoms and ions). In the shock wave, the kinetic energy of the incident flow is con-
verted into thermal energy of the heavy particles; this energy is gradually transferred from the atoms
and ions to the electrons, which ionize the atoms. Owing to the retarded exchange of energy between the
heavy and light particles, the electron temperature lags behind that of the atoms.

The structure of a shock wave in a partly or completely ionized gas has also been calculated on the
assumption of a constant degree of ionization. Such calculations reveal the importance of the electron com~
ponent of the thermal conductivity, as a result of which the electron gas in front of the jump in compression
is heated to a temperature very similar to the equilibrium temperature behind the shock wave. Calculations
show that, in severe ionization, the electron thermal conductivity and the exchange of energy between the
electrons and ions exert a comparable influence on the structure of the relaxation layer in the shock wave.
We note that, in considering the kinetics of ionization, the electron thermal conductivity has never yet been
taken into account, possibly because it is not particularly important in weak ionization.

In this paper we shall consider the structure of very strong shock waves with an equilibrium temper-
ature of the order of hundreds of thousands of degrees and over, in which the atoms are multiply ionized.
The kinetics of multiple ionization were considered earlier by V. A, Bronshtén and A, N, Chigorin [3] un-
der conditions similar to those existing in shock waves, in connection with the problem of the motion of
high-speed meteors through the atmosphere [4, 5]. However, these calculations, although very comprehen-
sive and apparently the only ones of their kind, still fail to provide a complete picture of the real structure

*An exposition of this problem may be found, for example, in the book of Zel'dovich and Raizer [1]; there
is a fairly complete bibliography in a later publication [2].
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of the shock wave, in view of the fact that they omit all consideration of the electron thermal conductivity.
As we shall see, this component of thermal conductivity plays a vital role in establishing the electron tem-
perature distribution, whicn in turn determines the rate of ionization. Hydrodynamic aspects were also
omitted from the calculation; the volume of gas was considered constant, and the electron and atomic tem-
peratures were balanced under the assumption of a constant store of total internal energy. (In the subse-
quent analysis we shall also reformulate the problem of the ionization reaction velocities for ions of dif-
ferent multiplicities and solve it in a novel manner.)}

It should be mentioned that the problem here considered differs very greatly in the mathematical
respect from the shock-wave structure problems solved earlier. The problem is reduced, in the usual
way, to one of finding an integrated curve relating the singular points of the system, the states in the neigh-
borhood of equilibrium and the establishment of equilibrium itself are determined by the behavior of the
integrated curve of the system in the neighborhood of the singular points, However, in contrast to the prob~
lems treated earlier [6, 7}, the kinetics of ionization and the electron thermal conductivity are taken into
account at the same time; the result is that the behavior of the curve in the neighborhood of a singular
point has to be analyzed, not in a phase plane, but in phase space, and this greatly complicates both the
qualitative analysis itself and the numerical calculations, Whereas numerical integration in a plane in
the neighborhood of a saddle point presents no serious difficulties, in view of the specific character of the
saddle, in the three-dimensional case matters are not so simple: A singular point of the generalized-sad-
dle type constitutes an ordinary saddle in some planes and a node in others, so that a small error in numer-
ical integration may lead to a serious departure from the desired solution,

1. Let us proceed to formulate the problem. Let us consider a plane shock wave in a coordinate
system linked to the wave, i.e., the one~dimensional steady motion of the gas in infinite space. In front of
the wave the gas is, generally speaking, cold and unionized; behind the wave the atoms are multiply ionized
because of the high temperature, The thermodynamical-equilibrium state of the gas behind the wave is
completely determined by the initial density and by a certain parameter characterizing the amplitude of the
wave, for example, the velocity of the leading edge or the temperature behind it, This state (degree of
ionization, density, etc.) may be calculated from the existing relationships governing shock rupture effects
and from the thermodynamical functions of the ionized gas [1, 8].*

We shall neglect the viscosity and thermal conductivity of the heavy particles, replacing the viscous
layer by a break, The viscosity of the electron gas is also unimportant, but the electron thermal conduct~
ivity is much greater than that of the ions and atoms, and acts both in front of and behind the jump in com-
pression. The temperatures of the electron and atomic-ionic gas are regarded as different,

The gas is considered as being monotonic, since in such a strong wave (one involving multiple ioni-
zation) the molecules (if the cold gas is molecular) dissociate extremely rapidly and at relatively low
temperatures,

Radiation and radiative heat transfer are not taken into account [1]. If the density of the gas is high,
let us suppose of the order of the density of atmospheric air, the range of the radiation, determining the
spatial scale of the region of radiant heat transfer, is far greater than the zones of ionization relaxation and
electron heating in front of the leading e‘d’ge, which are the only interesting features in the problem under
consideration. If, however, the gas is rarefied, the heated region is transparent to the radiation, the density
of the radiation within it is far lower than the thermodynamic-equilibrium value, and the radiation has very
little effect on the structure of the shock wave.

The question as to the primary ionization of the cold gas does not arise at all in the case of a strong
shock wave, since for temperatures of the heated region equal to hundreds of thousands of degrees the radi~
ation is always strong enough to create a small number of electrons in front of the wave, and these initiate
the electron avalanche. The structure of the shock wave is almost independent of the extent of the initial
ionization.

Let us introduce some notation and definitions. In every state, ions of various multiplicities m are
contained in the gas. All the heavy particles will be called ions for brevity, atoms being treated as ions of
zero charge m = 0,

*The rupture relationships may be derived from the system of equations describing the structure of the
wave by extending the spatial coordinate to infinity in both directions.
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Let N = ZNy, be the total number of heavy particles in 1 mm3, where Ny, is the density of the m ions;
the summation with respect to m always starts from m =0,

Let I, I, ... be the successive ionization potentials‘of the atom, I, =0, I, ., is the ionization poten-
tial of an m ion. The potential energy of the m ion, i.e., the energy expended in its formation from an atom
by the detachment of m electrons, is Qy =1, + 1, + ... +Ii;. The mean potential energy associated with one
ion for a given ionic composition

(0> =ZapQpm, Om=23N,/N

Here 0, is the concentration of m ions. The ions are obtained by electron impacts, and the energy
required for this purpose is directly drawn from the store of thermal energy of the electron gas.

Let us call the temperature and pressure of the ions T and p (p = NkT), of the electrons Tq and pg
{po = NgkTg), where Ng is the electron density. We regard the gas as electrically neutral, i.e., the elec~
tron and ion components are strictly related, Thus.Ng = ZmNy,, i.e., the mean charge number of the ions
{m) = Emozm coincides with the degree of ionization of the atoms o = Ne/N, while the macroscopic veloc~
ities are exactly the same for the two components,

The strictness of the relationship between the electron and ion gas is ensured by the strong polari~
zation Coulomb field E, arising from the slight separation of the charges which in fact always exists.
Owing to the negligibly small inertia of the electrons, the Coulomb force acting on the electrons is balanced
{to an accuracy limited by small-order electron terms in the ion mass ratio me/M) by the force of the
electron pressure gradient: NgeE =dpe[dx. An equal and opposite force acts on 1 cm? of ion gas.

Subject to the foregoing assumptions, the system of hydrodynamic equations for one-dimensional
steady flow in a many-component mixture takes the form [1]:

[:4 .
W) =an  @m=01,2.., A N,=N (1.1)
m==p
du dp dp
d I 5 ds dp, -
'B—A'I-LNCH(TICTL,)]=——EE“—L p H*—I-(Die—Equm (]—.3)
d 5 Mu? dp
o [N+ )] = - e, -
3 NE(T—T) )
Gie =g T
dT
8= —n,—~ (1.5)

Here qy, is the rate of change of the number of m ions in 1 cm3/sec, associated with the ionization of
the m- and (m~—1)-ions and the recombination of the m~ and (m + 1)-ions, S is the flow of heat due to therm-
al conductivity, %, is the electron contribution to the thermal conductivity, the term with the small kinetic
energy of the electrons 1/2 meu? is omitted, w;e 18 the rate of energy transfer from the ions to the electrons,
and Tei is the characteristic exchange time.

The system (1,1)-(1.5) has three integrals expressing the laws of conservation of the mass, momen=-
tum, and energy flows. The first integral is obtained if we sum all Egs. (1.1) and consider that the reaction
does not alter the total number of particles

Nu = N,D (1.6)

where N, is the number of ions in 1 cm? of the original gas (the index 0 refers to quantities in front of the
wave), D is the velocity of propagation of the shock wave through the cold gas. The second integral follow-
ing from (1.1) and (1.6):

MNw - p+ pe = MNoD® + o + Peo (1.7)
In order to obtain the third integral we add Egs. (1.3) and (1.4) and use (1.1) and (1.6)

S KT kT + (@) + M 5 = B (KT + adkT) + <Q0> + T a.8)
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Equation (1.6) enables us to rewrite the continuity equation in the form of kinetic equations for the
concentrations:

d
NDDiﬁ:qm (m=0,14,2,...) {1.9)

* dx
The system of differential equations representing the ion energy {1 .1), the thermal-conductivity heat
flow (1.5), the ionization kinetics (1.9), and the conservation integrals (1.6)-(1.8), together with the bounda-
ry conditions which we shall be discussing later, serves to determine the structure of the shock wave,

2. Let us simplify the system of equations and set out the kinetic constants. A knowledge of the ion-
ic composition of the gas oy, is necessary in order to find the degree of ionization ¢ = Ta ym and the po-
tential energy of the ions (Q). However, the kinetic equation may also be written directly for the degree
of ionization on the basis of (1.9

NOD% = Qe = qum (2°1)

Hence if we could approximately express the electron source 4 2nd the mean potential energy of the
ions {Q) as functions, not of the set of ion concentrations @y but simply of the degree of jonization w,
this would enable us to replace the set of equations (1.9) by the single equation (2.1}, and this would con-
siderably simplify the original cumbersome set,

We may carry out this operation by the method earlier proposed by one of the authors [1,9] for sim-
plifying the calculation of thermodynamic functions of gases in the region of multiple ionization, Let us
suppose that the charge number m, which actually only assumes integral values, instead constitutes a con-
tinuously varying quantity, and let us join the discrete I, and Q,, by continuous curves () and Q(a).
Usually ionization develops by the successive uncovering of the atoms, so that at any moment a gas particle
contains appreciable numbers of ions of only two or at most three types. In other words, the distribution
@, which is replaced by the continuous function, takes the form of a peak in m relative to the mean value
(m). We may thus approximately consider that in each state all the ions possess a single fractional charge
(m}), coinciding with the degree of ionization @. In this approximation the ionization potential of equivalent
ions may be regarded as I(a), while the mean potential energy (Q)=Q{(a). In the region of primary ioniza-
tion, for @ < 1 it is natural toput I =1, Q = aly.

The electron source g, constitutes the difference between the rates of ionization and recombination
of the ions, There may be two ways of ionizing atoms and ions by an electron beam: 1) the direct remov=
al of electrons from the ground level and 2) ionization in a number of steps, in which the atom or ion is
first excited by electron impact and then ionized either immediately or after several more exciting colli~
sions. Estimates show that the second mode is frequently the more effective, since the excitation and ion-
ization cross sections increase rapidly on raising the level. We snall not consider ionization from the
ground level, electron capture at the latter, or photo-recombination (although the latter may occur when
the density is not extremely low),

Estimates show that equilibrium between the population of the excited states of the ions {(atoms) and
the free electrons is established far more quickly than the electron concentration changes, This means
that the distribution of the ions over the excited levels may be regarded as approximately quasi-stationary,
assuming that it follows a comparatively slow development of ionization. Under such quasi-stationary con-
ditions, which are satisfied if the ionization potential of the ions is much greater than kTq and the number
of excited particles is far smaller than the number of unexcited particles, the appearance or disappearance
of every electron is accompanied by the vanishing or formation of a corresponding ion in the ground state,
without any time lag or lead.

However, the immediate cause of the vanishing and formation of ions in the ground state lies in their
excitation and deactivation by electron impacts,* so tnat

.= K'N,N —K'N,N*= K'N,N(1 — N*/ N,")

*We shall not consider deactivation by scintillation; this is compensated by excitation after the absorption
of captured resonance radiation.
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where K* and K' are the velocity constants of excitation and deactivation, N* is the density of the excited
ions, N*_ is a thermodynamically equilibrium quantity; the foregoing equation follows from the principle
of detailed equilibrium. Since N* is in thermodynamic equilibrium with the actual density of the electrons,
under conditions of multiple ionization N* ~ NN, so that finally

NoD 22 — KaNe (1 - i) (2.2)
z dp
where o, is the thermodynamic-equilibrium degree of ionization, On the approximation of ®equivalent®
ions, with a fractional charge, this quantity [1, 9] is determined from the equation

AT 2am k "
I(@)=kT,In X, _2( e ) (2.3)

Equation (2.2) may be written down directly from the expression for the difference between the ioni-
zation and recombination rates, the principle of detailed equilibrium, and the assumption that the rates of
ionization and excitation coincide (the latter corresponds to the instantaneous ionization of excited atoms).
This derivation gives a truer picture of the physical meaning of Eq. (2.2).*

The excitation velocity constant equals K* = {v ea(s)), where o{e) is the excitation cross section for
electrons with energy &, v is their velocity, the angular brackets denote averaging over the Maxwell dis-
tribution. In the case of ions, the cross section is almost constant at the threshold o(g) =¢(I*) = (I* is
the excitation potential), and

* I 8. a
K =0s4v,) (}IT— + 1) exp kI{ , (> = ( nk:e ) (2.4)

where (vg)is the mean thermal velocity. In neutral atoms the cross section increases linearly from the
threshold, ¢ = o(g) = Cle — I*), and instead of (2.4) we obtain a scarcely different formula in which the 1 in
the brackets is replaced by 2 while ¢ = o(kT) = CkT,

Published data regarding the excitation cross sections of ions are so sparse and imperfect that we
can here only make a very rough choice of o,

According to the results of calculations based on the Born approximation for a Coulomb field, carried
out in relation to hydrogen-like ions [10], we may put ¢ =1,87a/(m + 1)4 where a, is the Bohr radius and
andm =1, :

The quantity ¢ is rather too high; in [10] it is recommended that its value should be reduced by a
factor of 5, Furthermore, if we consider the origin of the charge factor (m +1)7¢, in applying the equation
to nonhydrogen-like ions it is natural to replace the (m +1)”¢ by the square of the ratio of the "hydrogen-
like® ionization potential to the true one; {(m +1)7¢— (IH/I)2 As excitation potential we shall take the val-
ue I* =3/, as in the case of hydrogen-like atoms. Neglecting unity in comparison with I*/kT e We obtain

— I 2 LY -
K* =054V 2n a,? (%’—)(m}@ ) exp-Zr (2.5)

This equation is, generally speaking, unsuitable for describing the excitation of atoms [1]; however,
it gives acceptable results if we take the true value of I; for the potential (for @ < 1), This appears reason-
able in view of the fact that a variation in the pre-exponential factor in the equation for K* has very little
effect on the calculated structure of the shock wave, partlcularly in the less important region of primary
excitation, as special calculations confirm.

*In the region of weak, single ionization, the equation correspondmg to (2.2) has a slightly different form,
since the rate of recombination is proportional to NoN4N, ~ a® and not o as in (2.2) (N* ~ NgNy ~ N2

and not Ng N), The term in brackets equals (1 — ozz/ozpz) instead of {1 — oe/ozp) However, recombmatlon only
plays an apprec1ab1e part in the shock wave on approaching the final state of the multiply ionized gas; hence
Eq. (2.2) may be everywhere used in the wave,
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As regards the remaining two kinetic constants, the time required for energy exchange between the
electrons and ions 7 ; and the electron thermal conductivity % ,, these were calculated from existing re-
lationships [1]:

o Vi Ve
Tei= ML, Ao = '——;k-(‘k—lia':—‘ (2°6)
4 Vo AezN . ViIn Aet Vme z
where A is the Coulomb logarithm, which is here regarded as constant and equal to its value in the final

state, z is the charge number of the ions, the coefficient ¢ depends very slightly on z and is taken as equal
to { = 5,25,

The specification of the initial state of the gas in front of the wave and of some parameter character-
izing the amplitude of the shock wave, for example, the wave propagation velocity D, makes the mathemati-
cal problem of solving the system completely definite. Since the equation does not include any terms des-
cribing the sources of the original electrons, we must specify a small but finite initial degree of ionization
in front of the wave. For the same reason the initial temperatures and pressures T =T, and py, ey =
ap, must be regarded as nonzero, although in the very strong waves considered they are far smaller than
the corresponding quantities behind the leading edge. The specified initial values of Togp ¢y, and Ny are
not independent but have to satisfy the Saha equation in order to make the initial state of the gas thermo-
dynamically equilibrium. The final values of the parameters T}, Ny, @y are determined in the usual way
from the initial values and the wave velocity D.

3. Let us examine the resultant system of equations qualitatively. We convert to dimensionless
variables

kT kT I Q N
== =t = [ = o= =
E=grr Q=g 0= i=gs =g, =

taking as scale of particle energy the initial kinetic energy of the atom &, = MD?/2 and as scale of length
the characteristic ionization length corresponding to the final state behind the leading edge of the wave
L; = N,D/K*N? as in Eq. (2.2).

Instead of the pressures p and p, we substitute their values p = NkT and Pe = NgkTg and eliminate
u by means of (1.6). Solving the system for the derivatives of temperature and degree of ionization and
making a number of further transformations, we finally obtain a system of three differential equations of
the first order

S =11(%,6,0,) =‘ixk' (Erg)"’(_g_)"mexp [_—i-(—a‘- —-é)] (1 _7}-)
.%. =fa(,0,0) = =1t L (%ﬁ)%[—g—(ﬁ 8+ [ — 1)+~ QO] (3.1)
&= a0 0,00 =F 225 (2 ()" 0, — 0) - 229 (ot 4041

and an algebraic equation for the density
'} —an 41 =0 (3.2)

Here we have introduced the following notation:

N -4
B=0ad, =1+, 8=-F, F=(3_25’f§n) (3.3)
The characteristic scales of length
. 2 Me 2 Drei
=5 mmo: Lo=%%3

for the thermal conductivity and the exchange of energy between the electrons and ions correspond to the
final state of the gas,

Choosing as independent variable the monotonically varying quantity o, we reduce the system (3, 1)
to two equations in phase space
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a8 fa ((Z, 8, 92)‘ 46 fa(a, 8, ee)

[

& T TR, 6,0,) T 1, 6,08, (3.4)

the density n being related to the phase variables by the same final equation (3.2).

Thus, in order to solve the problem of the structure of the shock wave, we must find the integrated
curve of the system (3.4) in phase space «, 6, 6 connecting the equilibrium points g, 6, egé and Ops B4
ek in front of and behind the wave, These points are singular points of the system, since all the f1 vanish
simultaneously in them (it may be shown that there are no other singular points in the system). In order
to find the curve in question, we must know the behavior in the neighborhood of the singular points, since
this describes the near-equilibrium states and the process of equilibrium establishment.

The behavior of the integrated curve in the neighborhood of a singular point is determined by the
character of the singularity; the ascription of a singular point to one particular type of character, in turn,
is determined by the roots of the characteristic eguation m.l -l = 0, where :! are the derivatives of the
right-hand sides of the system of f; with respect to their arguments y* calculated at the singular points. In
the case under consideration the arguments are o, 4, 8 o Here 53.1 is the Kronecker delta,

The characteristic equation of the system under consideration is a third-order equation
A e JA2 LT — T, =0
where Jj. are invariants of the coefficients of the matrix || ajiHc

It is easy to see [from Egs. (3.1), (3.2)] that the coefficients a.! (and hence Ji) are expressed in terms
of the equilibrium parameters and the chosen characteristic lengths. Corresponding estimates show that,
in the near-equilibrium state, in front of the wave the most rapid process (the shortest characteristic
length) is the heating of the electron gas by thermal conduction, and the slowest is the exchange of energy
between the electrons and the heavy particles. These estimates indicate the considerable effect of the
electron thermal conductivity on the structure of the wave; the heating of the electron gas in front of the
wave may lead to considerable ionization in this region. In the near-equilibrium state, the most rapid pro-
cess behind the wave is energy exchange (which tends to equate the electron and ion temperatures), while
the slowest is ionization.

Let us return to an analysis of the roots of the characteristic equation. The type of singular point is
determined by the signs of the real parts of these roots, and the signs may be determined by using, for ex-
ample, the Rauss theorem, according to which the number of roots of a real polynomial lying in the right-
hand half plane is equal to the number of changes in sign in the first column of the Rauss scheme set up in
a particular fashion [11],

In the case under consideration this column takes the form
1, —Ju Jo—Jg/Jn —J, (3.5)

Thus we have to determine the signs and orders of magnitude of the coefficients of the characteristic
eguation; this may be done by using the resultant relationships between the characteristic lengths and or-
ders of magnitude of the equilibrium parameters. The calculations are very cumbersome and will not be
presented in detail: the results show that for both the singular points the sign in the Rauss column (3.5)
only changes once, i.e., the signs of thereal parts are different (one root in the right- and two in the left-
hand half plane), and the two singular points constitute generalized saddles [12]. A more detailed investiga-
tion shows that these generalized saddle points constitute three-branch saddle-nodes with stable two-branch
nodes [13].

It is well known that, in shock-wave-structure problems in which the equation makes no allowances for
viscosity, a continuous curve joining the singular points {which in the present case are saddle points) does
not in general exist, There is a break within the structure, a sharp jump in compression at which, in the
present case, the ion temperature, the density, and hence the velocity udergo a discontinuity, while the
electron temperature and the degree of ionization are continuous., The position of the discontinuitly in phase
space is determined by the condition that, on passing through the jump, the quantities undergoing the dis-
continuity should satisfy an equation of the Rankine—Hugoniot type.
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Ag already indicated, in the characteristic equation there is one root in the right-hand half plane and
two in the left. This means that one integrated curve passes out from a point in front of the wave while two
pass to a point behind the wave; in order to choose the one corresponding fo the problem in hand, we have
to study the asymptotic of the solution in the neighborhood of this point. Using the foregoing relations be-
tween the characteristic lengths, expressing the fact that in the near-equilibrium state exchange takes
place "aster® behind the wave than ionization-recombination or heat transfer by thermal conduction (L, «

Lg « Lyj), so that in this region the temperatures are practically identical, we may write the asymptotic of
the system in the form

=ee

9 9 2i (2 — an) el VI=4/ (3.6)
’Eo?:_i+a{1+e[5(z—an)-<z}}' = 20

Clearly both temperatures, while remaining identical, will fall to their equilibrium value (d9/da < 0),
and hence the electron temperature in the wave will pass through a maximum (in the earlier analyses it
was asserted that the electron temperature increased monotonically in the wave).

Thus, of the two integrated curves proceding to the point behind the wave, we must choose the one for
which the temperatures of both components are close together and fall on approaching equilibrium,

The foregoing qualitative analysis enables us to integrate the system of equations describing the
structure of the shock wave numerically. Whereas, in a phase plane, the saddle is an ideal form for start-
ing the calculation, in phase space the matter is more complicated, since the generalized saddle constitutes
an ordinary saddle in some planes and a node in others, so that a slight deviation in the calculation may
carry us away from the solution desired, The computing process was as follows. The two parts of the in-
tegrated curve were calculated starting from the singular points and moving toward each other until they
met in the ®viscous® jump. The conservation conditions at the viscous jump may be transformed to rela-
tionships linking the dimensionless ion densities and temperatures in front of and behind the jump (the pa-

rameters without any index characterize the state of the gas in front of the jump; behind the jump they
bear the index 1):

4n 1 1 i
BT 91=9+“s“(mz*;'z:) 5.0

For each point of the integrated curve in front of the jump @, 4, 6, and hence for each value of n de-
termined by Eq. (3.2), the values of n; and 8; were determined from (3.7). The set of all these values forms
the geometrical locus of the points in phase space satisfying the Rankine—Hugoniot equations.

The intersection of the integrated curve starting from a point behind the jump with the resultant
geometrical locus gives the position of the jump in phase space and the true parameters behind the jump
ny, 8y, @, 05 and hence also their values in front of the jump n, 6, o, - In calculating the integrated curve
behind the jump, it is more convenient to start from the final singular point by the asymptotic system (3.6),
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for which this point is not singular, In calculating the density by the quadratic equation (3,2) in the region
behind the jump, the radical must be taken with plus sign, and in front of the jump with the minus sign, The
distribution of the parameters with respect to the coordinate { or x may be obtained after solving the equa-
tions in phase space by quadrature.

4, Let us now discuss the results of the calculations. The structure of the shock wave was calcula~
ted for air, using several values of the initial density and velocity of the shock wave, The curves of the
ionization potentials I(a) and the potential energies of the ions Q(«) were obtained by means of Lagrange
interpolation polynomials from the discrete values corresponding to the integral values of z, these being
determined from tables [8]. The initial degree of ionization was taken as «, = 0,01 in all the calculations.
Special checks showed that a variation in o, (within reasonable limits) had very little effect on the solution.

Figures 1-3 illustrate the temperature, density, and degree-of-ionization distributions for the three
following versions of the initial data:

Rkm  Ne,cm™ D, km/sec T°, K
&0 3.5.40w 57.9 9000
100 4.2.401 56 7 500
0 5.4.10% 75 16783

Here h is the height above sea level corresponding to the initial air density Nj. The resultant distri-
butions confirm the substantial effect of the electron thermal conductivity on the structure of the wave;
the heating of the electron gas in front of the wave is so considerable that the first ionization takes place
even before the jump. In this respect there is a considerable difference between this and the earlier analy-
ses {3, 5],in which, in calculating the relaxation zone, the authors started from the values of the ion tem-
perature behind the viscous jump, and in calculating the electron concentration and temperature from their
unperturbed values: Initial computing data of this kind could hardly fail to affect the distribution of the
parameters in the wave. '

Yet another special feature is the maximum in the electron-temperature profile. The existence of
this maximum is due to the rapid exchange taking place in this region, which leads to the balancing of the
temperatures even before the completion of ionization, while cooling continues as a result of the consump-
tion of energy in the ionization process. The graphs indicate quite clearly that the balancing of the temper-
atures takes place immediately after the maximum point on the descending branch of the electron-temper-
ature profile, this being a region of very high gradients in all the parameters. The density of ions and the
electron concentration increase very sharply in this region, while the gas temperature falls sharply, the
thermal-conduction flow being directed to the rear. Beyond the region of high gradients there follows a
slow approach of the parameters to their equilibrium values, and in this region the contribution of the re-
combination process becomes considerable.

The calculations were carried out in the BESM-3M computer,
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